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Abstract

Purpose – The purpose of this paper is to consider double-diffusive convection in a heated porous
medium saturated with a fluid. Of particular interest is the case where the fluid has a stabilizing
concentration gradient and small diffusivity.
Design/methodology/approach – A fully-coupled stabilized finite element scheme and adaptive mesh
refinement (AMR) methodology are introduced to solve the resulting coupled multiphysics application
and resolve fine scale solution features. The code is written on top of the open source finite element library
LibMesh, and is suitable for parallel, high-performance simulations of large-scale problems.
Findings – The stabilized adaptive finite element scheme is used to compute steady and unsteady onset of
convection in a generalized Horton-Rogers-Lapwood problem in both two and three-dimensional domains. A
detailed study confirming the applicability of AMR in obtaining the predicted dependence of solutal Nusselt
number on Lewis number is given. A semi-permeable barrier version of the generalized HRL problem is also
studied and is believed to present an interesting benchmark for AMR codes owing to the different boundary
and internal layers present in the problem. Finally, some representative adaptive results in a complex 3D
heated-pipe geometry are presented.
Originality/value – This work demonstrates the feasibility of stabilized, adaptive finite element schemes
for computing simple double-diffusive flow models, and it represents an easily-generalizable starting point
for more complex calculations since it is based on a highly-general finite element library. The
complementary nature of h-adaptivity and stabilized finite element techniques for this class of problem is
demonstrated using particularly simple error indicators and stabilization parameters. Finally, an
interesting double-diffusive convection benchmark problem having a semi-permeable barrier is suggested.
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Paper type Research paper

1. Introduction
Double-diffusive convection in a porous medium, like its counterpart in a viscous
fluid, exhibits a wide range of interesting convective flow structure and behavior.
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Double-diffusive effects occur when there are opposing gradients of two diffusing
components (commonly heat and a solute) that each affect the density of the fluid. The
coupled interaction of the two diffusing components can have a significant impact on
the stability of fluid-saturated porous media in a variety of relevant problem geometries.
Perhaps more significant is the role played by double-diffusive convection in effecting
the transport of heat and species for a wide range of steady-state or transient flow
configurations. The flow structure and transport behavior associated with double-
diffusive convection has applications in a broad range of areas including geophysics,
energy engineering, biophysics and materials processing. Some specific examples where
double-diffusive convection in a saturated porous medium is important include:
geothermal natural convection (Cheng, 1978; Jellinek et al., 1999; Jellinek and Kerr, 1999),
contaminant transport in aquifers and ocean sediment (Hickox et al., 1982; Gartling,
1982) gravitactic microorganism motion (Nguyen-Quang et al., 2008) and solute
segregation in the mushy zone of solidifying alloys (Heinrich and Poirer, 2004; Felicelli
et al., 1998; Zabaras and Samanta, 2004).

There is an extensive literature on double-diffusive convection encompassing many
disciplines and spanning more than 40 years. The reference works (Nield and Bejan,
1999; Diersch and Kolditz, 2002; Rudraiah et al., 2003; Lewis et al., 2004; Gobin and
Goyeau, 2008; Heinrich and Pepper, 1999) contain extensive bibliographies pertaining
to the broad-ranging aspects of double-diffusive convection in porous media. Much of
the early work on the topic was approached from the viewpoint of hydrodynamic
stability, and considered the classical configuration of a horizontal layer of fluid-
saturated porous medium subject to vertical temperature and solute concentration
gradients.

The linear stability of this problem was analyzed by Nield (1968). If the layer is
heated from below (with gravity oriented downwards) and saturated with a fluid
having a stabilizing solute concentration gradient, then stability theory predicts the
onset of convection from the basic motionless state to be oscillatory. This is referred to
as the ‘‘diffusive’’ regime; the component with the larger diffusivity (heat) is
destabilizing, while the slower diffusing component (solute) is stabilizing. It is well
understood that this oscillatory state is subcritical, and steady convection eventually
predominates. A thorough study of the bifurcation behavior for this case is presented
in (Mamou and Vasseur (1999). The opposite case (solute destabilizing) is referred to as
the ‘‘fingering regime’’ (Luo et al., 2008).

For double-diffusive effects resulting from temperature and solute concentration
gradients (thermosolutal convection), the large difference in the diffusivities of the two
species (typically a factor of 100 or more) has a significant impact on the flow structure
and heat and mass transfer. The small diffusivity associated with solute transfer leads
to sharp gradients near boundaries and within the domain. Hence, reliable, accurate
and efficient computations for double-diffusive convection remain an area of active
research (Sezai, 2002; Zhan and Li, 2003; Bennacer et al., 2003; Rebaı̈ et al., 2008) and
adaptive mesh refinemat (AMR) strategies remain relatively unexplored for this
problem class.

The present study considers the nonlinear multiphysics, multiscale behavior of
buoyancy-driven, double-diffusive convection in a porous medium. The flow is
assumed to be incompressible and the Boussinesq approximation is employed. The
governing equations (section 2) are Darcy’s flow law, the pseudo-fluid model energy
equation, and the equation for solute conservation. The open-source, Cþþ finite
element library, LibMesh (Kirk, 2006) is used to implement an adaptive mesh



Double-diffusive
convection in
porous media

39

refinement solution strategy in conjunction with the SUPG scheme as described in
section 3. Of particular interest are the AMR strategy and the impact of stabilization
when the effective solute diffusivity is much less than the thermal diffusivity.

2. Governing equations and variational formulation
Buoyancy-driven convection is considered here for low inertia flow through saturated
homogeneous porous media (see e.g. Nield and Bejan, 1999). Under these assumptions,
the momentum equation may be simplified to the standard form of Darcy’s law relating
the filtration velocity to the pressure gradient and body force term. The flow is
assumed incompressible and the Boussinesq approximation for density � is employed
in the momentum equation.

Conservation of energy is modeled by a single equation requiring the specification
of an effective heat capacity and thermal conductivity since energy transfer occurs in
both phases. Since the solute does not interact with the solid, the fluid velocity rather
than the filtration velocity appears in the convective terms of the solute transport
equation and the porosity enters as a material parameter (see e.g. Gray, 1975). In many
applications, an effective solute diffusivity must be defined to account for the effect of
the tortuous path in the solid matrix (Wooding, 1959). The resulting dimensional
governing equations modeling the coupled transport process are then:

r � u ¼ 0 ð1Þ

u þK

�
rp� �gð Þ ¼ 0 ð2Þ

�
@T

@t
þ u � rT � �Tr2T ¼ 0 ð3Þ

�
@S

@t
þ u � rS � �Sr2S ¼ 0 ð4Þ

� ¼ �0½1� �ðT � T0Þ þ �ðS � S0Þ� ð5Þ

where u is the velocity, T is the temperature, S is the solute concentration, and p is the
pressure. The absolute viscosity of the fluid is �, � is the density of the fluid, and g is
the gravitational acceleration vector. In many porous media, it is often the case that the
permeability varies in space or is anisotropic. The permeability in equation (2) has
been written as a tensor K for generality with the case of constant isotropic
permeability easily recovered. Here we will assume that K :¼ KK̂K , where K is a
dimensional permeability scale, and K̂K is a non-dimensional possibly spatially varying
tensor.

In equation (3), �T is the ‘‘effective’’ thermal diffusivity of the saturated medium
ðKT :¼ km=ð�0 ¼ cÞf Þ where the subscript m denotes a property associated with the
saturated porous medium, and the subscript f refers to a property of the fluid. The
parameter c in the definition of �T denotes the specific heat per unit volume, and k is
the thermal conductivity. The parameter � is the ratio of the heat capacity of the
medium to that of the fluid, � :¼ ð�0 ¼ cÞm=ð�0cÞf , and � is the porosity. The effective
solute diffusivity is denoted by KS. In the body force term of equation (2) the fluid
density � is modeled (under the Boussinesq assumption) as the linear function of
temperature and concentration given by equation. (5), where � is the thermal
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expansion coefficient and � is the solute expansion coefficient. The subscript zero
denotes a reference value of density, temperature, or solution concentration.

Appropriate length, time, velocity, temperature, and solute concentration scales are
used to define the non-dimensional variables:

x� :¼ x

d
; t� :¼ t

�d2=KT

; u� :¼ u

KT=d
;

T� :¼ T � T0

�T
; S� :¼ S � S0

�S
; p� :¼ K

�KT
p

where d is a characteristic length scale (such as the height of a porous medium layer)
and the thermal and solute concentration scales �T and �S are chosen so that
0 � T�; S� � 1. Equations (1-4) in non-dimensional form become (dropping the � for
convenience and substituting u from equation (2) into equations (1), (3) and (4)):

r � K̂K b �rpð Þ
� �

¼ 0 ð6Þ
@T

@t
þ K̂K b �rpð Þ � rT �r2T ¼ 0 ð7Þ

�

�

@S

@t
þ K̂K b �rpð Þ � rS � �r2S ¼ 0 ð8Þ

where � :¼ KS=KT is the ratio of the solutal and thermal diffusivities and
b :¼ ð�RSS � RTTÞêeg is the buoyant force vector, with RT :¼ g�K�Td=	KT ,
the thermal Rayleigh number, and RS :¼ g�K�Sd=	KS , the solute Rayleigh number.
The kinematic viscosity of the fluid is denoted by 	 :¼ �=�0, and the magnitude of the
gravitational acceleration is g :¼ jg j. Gravity acts in the direction described by the unit
vector êeg. Equations (6)-(8) will be used in the variational formulation (section 2) and
finite element discretization (section 3) described subsequently. Equation (6) can
essentially be viewed as a constraint equation for the coupled pair of advection-
diffusion equations (7) and (8).

In the application class of interest, heat diffuses much more quickly than mass,
which implies �� 1 and the solute transport equation has a singular perturbation
structure. This structure implies that thin boundary layers may form in the solute
solution profile, and this motivates the need for adaptive mesh refinement and multi-
resolution simulation. The further presence of the convective term suggests that
fictitious numerical oscillations may be generated on coarser meshes during the
adaptive process and hence a stabilized scheme would further improve the robustness
of the associated algorithm as described later (section 3).

An auxiliary non-dimensional group which appears in the literature is the buoyancy
ratio N :¼ ��C=��T , which is a measure of the competing solutal and thermal
buoyancy effects. In this work we have chosen the sign convention in equation (5)
which yields �; � > 0 and therefore N > 0. This is consistent with the configuration of
competing thermal and solutal layers considered in later simulation studies. In
addition, it is common in the literature to use the Lewis number Le :¼ ��1. The
relationship between these dimensionless parameters is then given by RTNLe ¼ RS.

A corresponding weak variational formulation on the domain � may be constructed
in the usual weighted-residual manner by projecting residuals for equations (6)-(8)



Double-diffusive
convection in
porous media

41

against spaces defined by admissible test functions vp 2 Vp; vT 2 VT , and vS 2 VS ,
respectively, and applying the divergence theorem to obtainð

�

K̂K b �rpð Þ � rvp dx ¼
ð
@�

K̂K b �rp½ � � n̂n
� �

vp ds ð9Þð
�

@T

@t
þ K̂K b �rpð Þ � rT

� �
vT þrT � rvT dx ¼

ð
@�

rT � n̂nð ÞvT ds ð10Þð
�

�

�

@S

@t
þ K̂K b �rpð Þ � rS

� �
vS þ �rS � rvS dx

¼
ð
@�

� rS � n̂nð Þ ¼ vS ds ð11Þ

where @� is the boundary of � and n̂n is the outward unit normal vector. We note that
for a homogeneous isotropic permeability, K̂K would become the nsd � nsd identity
matrix, where nsd is the number of space dimensions.

Essential boundary conditions may be included explicitly by restricting the class of
admissible solution functions. This implies that the corresponding test functions are
zero on those portions of the boundary, and therefore these boundary integral
contributions vanish. Penalty approaches are also popular strategies for weakly
enforcing essential conditions.

Any remaining flux (Neumann) boundary conditions can be incorporated as natural
boundary conditions by simply substituting the desired flux data in the boundary
integrals on the right-hand side of the above equations. For example, in equations (9)
for the pressure, no flow normal to an impermeable wall ðu � n̂n ¼ 0Þ can be enforced in
a weak sense by setting the corresponding expression in the boundary integrand on
the right to zero.

Finally, since only the gradient of the pressure appears in equations (9)-(11) it is
clear that, when Neumann-only boundary conditions are provided in equation (9), the
pressure is only specified up to an arbitrary constant. The indefiniteness of the system
is, in general, not a difficulty for iterative Krylov subspace solvers when they are given
a reasonable initial guess. However, some preconditioners, such as e.g. ILU(0), are less
robust in the presence of indefinite systems and for this reason we typically ensure that
the system is definite by pinning a specific value of the pressure at an arbitrary node
on the boundary.

3. Discretization scheme
A Galerkin finite element approximate formulation is constructed by posing the
previous weak statement on a finite element discretization of domain � with associated

finite-dimensional approximation spaces V h
p 	 Vp;V

h
T 	 VT ;V

h
S 	 VS . In this work,

standard Lagrange finite element basis functions, f’ig; i ¼ 1; . . . ;N are used. The
dependent variables (p, T, S ) are approximated by semi-discrete expansions

(ph;Th; ShÞ in the usual manner (see e.g. Becker 1981; Gallagher et al., 1984; Gresho and
Sani, 1998; Hughes, 1987; Strang and Fix, 1973; Johnson, 1987).

For small values of �, the standard Galerkin method may produce oscillatory
solutions to convection-dominated transport if the mesh is not sufficiently fine. AMR
may be able to solve this problem, but we are also interested here in enhancing the
reliability and efficiency of AMR via stabilization. More specifically, stabilization will
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help maintain robust algorithms on coarse and intermediate meshes during AMR and
coarsening. In fact, coarsening during the AMR process may otherwise induce local
oscillations that degrade the reliability of the non-linear solver, and in turn trigger
undesirable additional refinement.

Hence, to ameliorate this difficulty and enhance algorithm reliability on fixed
meshes or on intermediate adaptive meshes, a consistent stabilizing term is included
that is proportional to the solute equation residual given in equations (8). The stabilized
Galerkin method is then: find ph;Th and Sh, satisfying the boundary and initial
conditions, such thatð

�

K̂K bh �rph
� �

� rvh
p dx ¼

ð
@�

K̂K bh �rph
h i

� n̂n
� �

vh
p ds ð12Þð

�

@Th

@t
þ K̂K bh �rph

� �
� rTh

� �
vh

T þrTh � rvh
T dx

¼
ð
@�

rTh � n̂n
� �

vh
Tds ð13Þð

�

�

�

@Sh

@t
þ K̂K bh �rph

� �
� rSh

� �
vh

S þ �rSh � rvh
S dx

þ
ð

�0

e K̂K bh �rph

� �
� rvh

S

� �
Rh

S dx ¼
ð
@�

� rS � n̂nð Þvh
S ds ð14Þ

holds for every admissible vh
p; v

h
T and vh

S . Here,

Rh
S :¼ �

�

@Sh

@t
þ K̂K bh �rph

� �
� rSh � �r2Sh ð15Þ

is the strong-form solute equation residual (equation (8)) for the finite element
approximation, 
e is an element-wise stabilization parameter, and the stabilization
integral is defined over �0, the union of element interiors. Equation (14) is an extension
of the classical SUPG stabilization scheme (Brooks and Hughes, 1982) for a nonlinear
advection-diffusion equation. We note that the additional term has been designed in a
consistent manner, in that it vanishes (by equation (8)) upon substitution of the exact
solution. In this particular problem, both the stabilization parameter 
e and the upwind-
modified weighting function K̂K ðbh �rphÞ � rvh

S depend on the unknown solution.
While the exact form of 
e for the one-dimensional linear advection-diffusion

equation is well-known, for higher-dimensional problems in which strongly-nonlinear
velocity fields and source terms are present, designing 
e is a non-trivial task. The
main difficultly lies in adding enough artificial dissipation to suppress spurious
oscillations in the solution without degrading the overall (asymptotic) accuracy of the
method in the process. In the present work, we use the following form of 
e (based on
the work in shakib, 1991)


e :¼ @�i

@xj

@�i

@xk

� �
ujuk þ �2 @�i

@xk

@�j

@xk

@�j

@xl

@�i

@xl

� �� 	�1=2

ð16Þ

in equation (14), where ui is the ith component of the velocity field, summation over
repeated indices i, j, k and l is implied, and where @�i=@xj is the (i, j) entry of the inverse
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Jacobian of the geometric map between the reference element and physical element �e.
The entries in the inverse Jacobian matrix are Oðh�1

e Þ, where he is a characteristic size
of the physical element �e. We remark that this particular choice of 
e reduces in the
1D, constant-velocity case to


e ¼
he

2juj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

1þ �2

s0
@

1
A ð17Þ

where � :¼ hejuj=2� is the cell Peclet number. Although this simplified form is not
directly applicable to the present problem, it is instructive because it shows that 
e has
the correctOðheÞ asymptotic dependence on the mesh spacing.

The stabilized Galerkin method of equations (12)-(14) yields a semi-discrete system
of coupled non-linear differential algebraic equations. To integrate from time level tn to
tnþ1, where tnþ1 :¼ tn þ�t, a standard �-scheme is applied (Smith, 1996). The method
is formally second-order accurate in time if � ¼ 1=2, and the steady equations are
recovered in the code by setting 1=�t :¼ 0 and � :¼ 1. For oscillatory transient
problems we use the second-order time differencing scheme. In the steady-state
continuation problems, both time-stepping and steady-state solves are combined in an
innovative manner as described later in Algorithm 1. The resulting fully discrete non-
linear system of equations is solved here via an inexact Newton method. The Jacobian
entries for the non-linear system are precomputed analytically, with the exception of the
derivatives of the stabilization parameter 
e with respect to the dependent variables,
which are handled more effectively via finite differences due to their complexity.

4. Solution algorithm and AMR implementation
The solution scheme is designed to allow accurate computations in and investigations
of challenging parameter regimes. The general idea is to combine both time stepping
and continuation techniques to arrive at stable solutions to advection-dominated
problems on grids which are highly-refined in layers or regions of interest. This
method allows us to retain the benefits of AMR without the excessive computational
costs that may be involved in adapting at every timestep. In addition, it provides a
reasonable procedure for stepping through a given region of parameter space, and
gradually increasing (resp. decreasing) the problem size as the solutions become more
(resp. less) challenging. Algorithm 1 describes the process used to generate sequences
of solutions and map the parametric space.

4.1 AMR error indicator
AMR (h-refinement) has been used to generate efficient well-graded grids in multi-
resolution problems for many years, and there is a rich literature in the areas of
computable error indicators (Zienkiewicz and Zhu, 1987; Bangerth and Rannacher,
2003), theoretical a posteriori error estimates (Ainsworth and Oden, 2000; Babuška and
Rheinboldt, 1978), and application studies which use h-refinement as an essential
ingredient in the overall solution scheme (Carey et al., 2004; Anderson et al., 2005). In
this work, we employ a flux-jump error indicator similar to the classical indicator
proposed by Kelly et al. (1983) to drive the h-refinement process.

Following the previous line of multiscale reasoning (related to the size of �) which
led to stabilization of the solute equation, the solute approximation is also used to
construct an error indicator to drive the adaptivity process in the fully coupled solution
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algorithm. We recognize that, in general, the use of a single solution component to drive
the adaptivity process may not be sufficient to control the pollution error arising from
other components of a coupled physical system. In such cases, the use of weighted
linear combinations of error indicators, and adjoint methods which assess the
sensitivity and influence of the error on quantities of interest, may be required as well.
These and related techniques are topics of recent and ongoing research (Carey et al.,
2009; Estep, 2008).

Algorithm 1: The AMR/continuation solution scheme: First, select a generic parameter
‘‘’’ (e.g.  ¼ �;RT ;RS , etc.) and a ‘‘moderate’’ initial value 0. Then solve the unsteady
equations starting from a given initial condition, e.g. the linear conducting state. AMR is
not active during this time-dependent evolution stage. Once steady state is detected for
0, we increment  and begin the steady solve continuation loop. The AMR process is
driven by the flux-based indicator of equation (18) and the statistical flagging scheme
mentioned in section 4. The initial guess to the iterative non-linear solver at each step is
the solution at the previous parameter value, projected onto a newly, refined grid.

Initialize, set  ¼ 0.
Solve unsteady equations to steady state (AMR inactive).
Increment .
while  6¼ f do

Solve steady equations for current .
Adaptively refine/coarsen the grid, project the solution, and re-solve.
Increment .

end while

In the subsequent AMR simulations, we compute the solute flux jump error indicator
for a given element e with boundary @�e as

�FLUX
e :¼ he

24

ð
@�e

jRej2ds

� �1=2

ð18Þ

where the interface residual is

Re :¼
0; 2 �D

gN �rSh � n̂ne; 2 �N
1

2
ðrShjf �rShjeÞ � n̂ne; 2 @�e \ @�f 6¼ ;

8><
>: ð19Þ

Here �D and �N are the Dirichlet and Neumann boundary segments for the solute
variable, gN represents given Neumann boundary data, n̂ne is the outward unit normal
for cell e, and cell f shares an edge (face) with cell e in the finite element mesh. In
regions of rapidly changing solution gradient (such as in boundary or internal layers)
this term will be large and hence refinement will be triggered in such zones.

Another important aspect of AMR is the manner in which one uses the computed
error indicator to actually flag individual elements for refinement and coarsening.
Statistical approaches are fairly robust (Carey and Humphrey, 1981; Aftosmis and
Berger, 2002; Peterson et al., 2007) and in this work we employ such a strategy, treating
the element error as an approximately log-normal distribution and flagging elements
in the tails for refinement/coarsening. Additional stopping tests are applied in the full
algorithm.
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4.2 The LibMesh library
The main solution steps in Algorithm 1 are accomplished using the LibMesh (Kirk,
2006) software library developed primarily by our CFD research group over the past
several years. LibMesh is designed to facilitate parallel, adaptive multiphysics/
multiscale simulations using adaptive mesh strategies and finite element
approximation schemes. The software is written in Cþþ and takes advantage of
object-oriented design features to enable use across different application domains and
to facilitate coupling with independent libraries such as ParMETIS (Karypis and
Kumar, 1998) for parallel partitioning and PETSc (Balay et al., 1997) for iterative
solvers. LibMesh is an open source software package available to the scientific
community via the Sourceforge.net (http://libmesh.sf.net) site. The design
of LibMesh has been influenced by the scientific and engineering communities’ need
for large-scale, coupled, multi-resolution simulation capability. Object-oriented
programming techniques pioneered by other research groups (Cross et al., 1999), and
the existence of other high-performance Cþþ finite element libraries such as
deal.II (Bangerth, 2000), Alegra (Budge and J. Peery, 1996), PZ (Devloo and
Longhin, 2002), and UG (Bastian et al., 1997) have also inspired our own research.

Applications employing LibMesh are built on top of an existing class library with a
well-defined application programming interface (API) that provides the infrastructure
for the parallel adaptive capability. Parallelism is achieved via domain decomposition
to mesh subdomains that are distributed across the available processors. Elements are
wholly owned by processors while nodes on common subdomain interfaces are
assigned to the processor with lower global index. The resulting data structure enables
efficient communication across the distributed processors.

As described earlier, the adaptive mesh refinement strategy involves subdivision of
parent elements and their children to define an unbalanced tree data structure.
Continuity requirements across edges between refined and unrefined cells (that is cells
at different levels in the tree) are treated here algebraically using interfacial constraints.
Discontinuous approximations with weak interfacial constraint enforcement
(Discontinuous Galerkin schemes) have also been implemented within the LibMesh
library. The adaptively refined grids shown later are composed of either quadrilateral/
triangular (2D) or hexahedral/tetrahedral (3D) geometric element types.

We now briefly discuss a few key aspects of the techniques used to enforce
C0-continuity across the non-conforming (so-called ‘‘hanging node’’) edges and faces
present in all the adaptively refined meshes used in this work. In the LibMesh library,
we have taken special care to ensure that the computation of hanging node constraints
is an efficient, data-local, geometric-element-type-independent procedure. C0-continuity
is enforced in the following manner: we let uF and uC be the fine and coarse scale finite
element solutions, respectively, and assume uF is to be constrained to uC along some
shared interface, �. Then, we impose

ðuF ; �F
k Þ� ¼ ðuC ; �F

k Þ� 8 k ¼ 1; . . . ;NF ð20Þ

where ð�; �Þ� is the standard L2 inner product on �, �F
k is the fine scale basis function

associated to degree of freedom k, and NF is the number of fine scale basis functions.
Expanding the finite element solutions in their appropriate bases eventually leads to
the (small) linear system of equations

AuF ¼ BuC ð21Þ



HFF
20,1

46

We can then solve for the fine degrees of freedom by numerically inverting the square
matrix A. To improve the data locality of the scheme, we assume always that a
conforming ‘‘level-0’’ coarse mesh exists and that child degrees of freedom can be
constrained to a parent’s degrees of freedom, rather than a neighbor’s.

This idea is illustrated in Figure 1(a), in which the hanging node (black dot in the
figure) constrains the refined elements A, B, and C to take on the mid-edge value of
neighboring element D at this point. In the LibMesh library, to minimize potential
communication overhead, we would instead constrain the hanging node on element A
to the value on its parent element P, as shown in Figure 1(b). We know element P exists
due to the conforming grid assumption, and element A has Oð1Þ look-up time for its
parent due to the natural structure of the refinement tree. The hanging node value can
then be constrained simply by considering the finite element solution space of the
parent as the ‘‘coarse’’ space. The neighboring element is no longer involved, and the L2

constraint equations now apply to child and parent rather than to the child and coarse
neighbor. In cases where more than one refinement level separates neighboring
elements (meshes violating the so-called ‘‘level-1’’ rule) the same procedure can be
applied; we exploit the fact that the grid is still conforming at some level, and therefore
the constraints can be applied recursively.
LibMesh also supports spectral degree (uniform p) refinement, although fully-

automatic hp-refinement, in particular the efficient automatic selection of h or p
refinement, remains a topic of ongoing research (Bangerth and O. Kayser-Herold, 2008;
Solin and Demkowicz, 2004). The present work exploits the coarsening capability
afforded by the refinement tree data structure. That is, active refined cells in the tree
can be coarsened to reactivate a parent element. This allows coarsening down to the
level of the original mesh. Further details of the AMR data structures, iterative
solutions on adapted grids, and other related aspects for parallel adaptive FE
simulation are available in Carey (1997) and other sources.

5. Results and discussion
Results for several case studies in two and three dimensions are described for
simulations using the stabilized adaptive finite element formulation described in
section 3. More specifically, in section 5.1 we investigate the classical heated layer
configuration for double-diffusive convection in unit aspect ratio domains for two and
three dimensions. This includes a representative study of the oscillatory behavior of
the ‘‘diffusive’’ mode, and a more detailed comparison of adaptive and uniform grid
results for steady convection in a computationally-challenging diffusivity ratio (Lewis
number) regime. These cases are useful as verification tests of the numerical scheme. In
section 5.2 a 2D simple enclosure with a ‘‘barrier’’ of lower permeability than the
surrounding porous medium is used to further demonstrate utilization of adaptivity.
Finally, in section 5.3 we discuss simulations with more complex, 3D geometries.

Figure 1.
Hanging node (black dot)
constraints based on
neighbors 1(a) and based
on parents 1(b)
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Of particular engineering interest in many applications, and requiring accurate
resolution of boundary layers, are the Nusselt number NT and the Sherwood number
NS , defined by

NT :¼ �
ð
@�D

rT � n̂n dx NS :¼ �
ð
@�D

rS � n̂n dx ð22Þ

respectively, where @�D is a subset of @� for which Dirichlet boundary conditions
are specified on the solute. In the results which follow, localized adaptive refinement
near the walls is seen to be an effective procedure for improving approximation of
these quantities without greatly increasing the size of the global system of equations.
The flux calculations can be further improved by applying superconvergent flux post-
processing formulae such as those found in (Carey et al., 1985; Pehlivanov et al.,
1992). Finally, some problems have analytical results for the relationship between �
and NS in asymptotic regimes, and these results can be used to verify the numerical
results.

5.1 Generalized Horton-Rogers-Lapwood problem
A rich literature exists in the area of double-diffusive convection in porous media (see
e.g. Nield and Bejan, 1999, for a list of references). Much of the early work involved
analytical investigations and focused on the development of linear stability theory. The
classical problem of single-component flow in a thin, heated, isotropic porous medium
is referred to as the Horton-Rogers-Lapwood problem. When the layer is heated from
below, linear stability theory predicts a critical thermal Rayleigh number of RT ¼ 4�2.
Below this value, the linearly stratified quiescent initial state is a stable solution, while
above it small disturbances grow, leading to steady convection.

In the double-diffusive case with opposing thermal and concentration gradients, the
stability behavior is more complicated. Linear stability theory predicts both steady and
oscillatory onset for the layer heated from below with a stabilizing concentration
gradient. The critical thermal Rayleigh number for stationary onset is given by

RT;crit ¼ 4�2 þ RS ð23Þ

The criterion for steady onset only depends on the solutal Rayleigh number, RS . For
oscillatory onset, the stability criterion also depends on the value of

� :¼ �
�

Le ð24Þ

The critical Rayleigh number in the oscillatory instability case is

RT;osc ¼ 4�2 1þ �

�
þ RS

�
ð25Þ

The oscillatory instability is associated with a non-zero imaginary part of the temporal
eigenvalue. The linear stability diagram for the quadrant where RT and RS are both
positive is shown in Figure 2 for a representative value of � ¼ 10=3. Note that for
� ¼� 1, linear theory predicts that only steady onset of convection is possible. In the
limit as Le (resp. �)!1, the dashed line in Figure 2 becomes parallel to the RS axis,



HFF
20,1

48

and intersects the steady onset line at the point RT ¼ 4�2. Increasing the value of Le
(reducing �) therefore has the effect of shrinking the stability region (below the dashed
line) and thus minimizing the stabilizing effect of the solute field. It has been well-
established that the oscillatory mode is subcritical (Nield and Bejan, 1999).

For the results presented in this section, the equations were solved in the unit square
domain: ðx; zÞ 2 ð0; 1Þ � ð0; 1Þ, with gravity vector êeg ¼ ð0;�1Þ. The initial data
corresponds to the quiescent state with opposing linear solute and temperature
profiles, given by

pinit ¼ RT Tbotzþ
z2

2
ðTtop � TbotÞ

� 	
� �RS Sbotzþ

z2

2
ðStop � SbotÞ

� 	
Tinit ¼ Tbot þ zðTtop � TbotÞ
Sinit ¼ Sbot þ zðStop � SbotÞ

where Tbot ¼ Sbot ¼ 1;Ttop ¼ Stop ¼ 0. A small initial perturbation of the form

�TðxÞ ¼ Apert sinð�xÞ ð26Þ

where Apert 
 10�4 is applied to the temperature field at time t ¼ 0 to induce the
development of finite amplitude states, rather than computing much longer relying
only on the build-up of roundoff error.

5.1.1 Oscillatory onset of convection. To illustrate the oscillatory mode of onset, a
simulation was performed for RT ¼ 200;RS ¼ 750; � ¼ 0:1 and � ¼ 5:4. For these
parameters, equation (25) yields RT;osc ¼ 182:8, so the simulation should be in the
oscillatory onset region. For the large RS value, steady onset is predicted to occur for
RT ¼ 790, so there is a large separation between the critical values of the two modes.
Figure 3 shows NT and NS vs time for this simulation. The 2D calculation was
performed on a 40� 40 uniform grid of bilinear quadrilateral elements (which is of
adequate resolution for this parameter regime) using the second-order time-
differencing scheme. The time range in the figure corresponds to an initial window
where the perturbation has grown to finite amplitude.

The behavior at early time is the oscillatory ‘‘diffusive’’ mode predicted by linear
stability theory. In this regime, the flowfield reverses direction at the frequency

Figure 2.
Linear stability diagram
for the destabilizing
temperature, stabilizing
solute case, with � (as
defined in equation (24))
equal to 10/3
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predicted by linear theory (Nield and Bejan, 1999). The values of NT and NS grow in an
oscillatory manner from the quiescent state value of 1: at a dimensionless time around
0.3, the diffusive mode becomes unstable and there is a large increase in the values of
NT and NS . For this new convective state the flow cell rotates primarily in one direction
but displays secondary oscillations. The nature of the secondary transient flow state
depends strongly on the value of �. There is a broad range of behavior exhibited by
these transient subcritical flow states and both time and spatial accuracy are very
important in characterizing the various flow states that can occur.

5.1.2 AMR investigation of steady onset. The emphasis in the current study is on
steady double-diffusive convection in order to focus on the application of h-adaptive
methods. To demonstrate the ability of the adaptive grids in computing steady,
double-diffusive convection solutions, we conducted a grid convergence study using
the continuation method discussed in section 4. The diffusivity ratio � was selected
as the continuation parameter, and a sequence of solutions was computed starting
with a moderate value of � ¼ 0:1 and decreasing to the desired value of
� ¼ 0:03 Le ¼ 100=3ð Þ according to Algorithm 1. The remaining problem parameters
were chosen as RT ¼ 200;RS ¼ 160 and �=� ¼ 1=3, thus placing us in the regime of
steady onset of convection (since RT > 4�2 þ RS ). An adaptive grid and three
uniform grids containing 40� 40; 60� 60, and 150� 150 bi-linear quadrilateral
elements were compared. (In the uniform grid cases, the refine/coarsen step in
Algorithm 1 is simply skipped.) The adaptive grid was initialized with 15� 15
coarse-level elements, and a maximum refinement ‘‘depth’’ of four levels was allowed
in order to be consistent with the finest mesh resolution studied in the uniform case.

A perturbation is applied to the initial quiescent state as described above. For this
set of computations it is advantageous to supply an initial perturbation in order to
guarantee which segment of the x-periodic solution (e.g. central upwelling or central
downwelling) is obtained. Use of the perturbation form given in equation (26) always
produces the solute upwelling solution shown in Figure 4. The steep boundary layers
present in the solute field for this value of � are apparent in Figure 4(a) near the top and
bottom Dirichlet boundaries. In the interior of the domain, a thin solute layer of

Figure 3.
NT and NS as a function

of time, for the case
RT ¼ 200, RS ¼ 750,
� ¼ 0:1 and � ¼ 5:4
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approximately the same width rises up from the bottom boundary. Accurate
calculation of the Sherwood number depends strongly on carefully capturing these
solution features.

In contrast, the thermal field (shown in Figure 4(b)) does not contain sharp
boundary layers. This behavior is quite typical for this class of applications, and
justifies the decision to allow adaptive refinement to be driven entirely by the solute
field. In this case, the true solution is not known, so we give our comparisons relative to
the most-refined uniform grid with 150� 150 elements (151� 151 nodes, three degrees
of freedom (dofs) per node, for a total of 68,403 dofs).

A plot of S(y) along the line x ¼ 0:5 (shown schematically in Figure 5(a)) for several
different grids is given in Figure 6(a). Grid convergence of the solutions is demonstrated

Figure 4.
Contours of solute (Figure
4(a)) and temperature
(Figure 4(b)) for � ¼ 0:03
on reference uniform
150� 150 grid

Figure 5.
Location of slices for
line plots
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Figure 6.
Comparison of line plots

of solute concentration
with � ¼ 0:03 for the

adaptive (V), 150� 150
(A), 60� 60 (�), and

40� 40 (4) grids
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in the line plots of the solute variable given in Figure 6. The sharpness of the solute
boundary layer near y ¼ 1 is readily observed in this plot. Close-up views of the line plot
in Figure 6(a) near y ¼ 0 and y ¼ 1 are given in Figures. 6(c) and 6(e), respectively. These
plots reveal that the solutions on the 40� 40 and 60� 60 grids are stable, but overly
diffuse, relative to the fine 150� 150 uniform grid solution. This arises from the artificial
diffusion introduced by the SUPG formulation. The Sherwood number is under-predicted
on these coarse grids because of the added diffusion, but this is generally preferable to
the node-to-node oscillations which would be present in the absence of stabilization on an
ungraded mesh. Excellent agreement in the boundary layer region is observed between
the adaptive grid and the finest uniform grid solutions considered. However, the adapted
grid (shown in Figure 7(a)) contains approximately 50 per cent fewer nodes.

In order to demonstrate the capability of the adaptive grids near insulated boundaries
and internal layers, we have also included line plots of the solute variable along the line
y ¼ 0:2 shown schematically in Figure 5(b). Figure 6(b) gives a comparison along this
line for several different grids. A close-up of the near-wall region, given in Figure 6(d),
once again reveals good agreement between the adapted and uniform 150� 150 grids
while showing that the coarser grids tend to over-predict the solute value in this region.
A close-up of the internal layer near x ¼ 0:5 is given in Figure 6(f). Here, the coarse grid
solutions are oscillation-free but tend to under-predict the maximum solute value along
the centerline. The adapted grid has a highly localized refinement pattern in this region,
and the solution is in good agreement with the 150� 150 reference solution.

It is imperative to stress that these convergence results imply only that the uniform
and adaptive grid calculations are converging stably to the same solution, which is not
to say that they will be in good agreement with independent theoretical, experimental,
or numerical results. We now endeavor to show that our results are also in agreement
with asymptotic boundary layer theory for porous media layers.

Based on analytical asymptotic theory and numerical computations in porous
media boundary layers (Bejan, 1984; Bejan and Khair, 1985; Angirasa and Peterson,
1997) and studies of convection in enclosed porous media (Trevisan and Bejan, 1985,
1986) it is known that the Sherwood number has an asymptotic square root dependence
on the thermal Rayleigh number RT and the Lewis number Le

Figure 7.
Adaptively-refined grid
(10,929 nodes, 32,787 dofs)
used for comparison in
grid convergence study
(left, Figures 7(a)). Plot of
the log of the computed
Sherwood number (NS ) vs
the log of the Lewis
number (Le) for the
adaptive (V), 150� 150
(A), 60� 60 (�), and
40� 40 (4) grids used in
the grid convergence
study, Figure 7(b), right
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NS 

ffiffiffiffiffiffiffiffiffiffiffi
RTLe

p
¼

ffiffiffiffiffiffi
RT

�

r
ð27Þ

for Le;RT � 1. This asymptotic regime is computationally challenging and provides
a useful verification test. Accordingly, the Sherwood numbers are computed on the
grids previously utilized for decreasing values of � (resp. increasing Le). The other
non-dimensional parameters and the initial conditions are the same as before. Figure
7(b) gives a plot of logðNSÞ vs log(Le) for 10 � Le � 100 for the same grids discussed
previously. Since RT is held constant in this case, we expect an asymptotic square-root
dependence of NS on Le as Le!1. This is indeed observed in Figure 7(b) for
the finest uniform grid and the adaptive grid calculations, even for moderate Le.
The fine uniform and adaptive grid results are therefore consistent with the
theoretically predicted asymptotic behavior. The coarse uniform grids, on the other
hand, not only under predict the NS vs. Le trend, they also do not exhibit the proper
constant-slope behavior, trailing off at the higher (more challenging) Le values.

5.1.3 3D analog of the steady onset case. We also investigated an analogous three-
dimensional version of the Horton-Rogers-Lapwood problem in a cube. The same
physical parameters as in the 2D case were used once again: RT ¼ 200, RS ¼ 160,
�=� ¼ 1=3, and � ¼ 0:1. An initial mesh with 20� 20� 20 trilinear hexahedral
elements was employed in this particular case. Three different views of a
representative steady-state 3D solution are shown in Figure 8. Figure 8(a) gives a
detailed picture of the post-processed velocity field vectors superimposed on the
temperature field. These velocity vectors were computed using the constrained
L2-projection technique described in the Appendix, and show downwelling fluid in the
four corners and the top of the domain, with four identical recirculating upwelling
regions on each of the side faces of the cube.

In Figure 8(b), we give an ‘‘exploded’’ view of the 3D domain which more clearly
shows the sharpness of the solute boundary layers near the top and bottom of the
domain. Finally, in Figure 8(c), a representative simple example of a 3D adapted mesh
is shown. The adaptivity tracks the solute boundary layers at the top and bottom of the
domain, similar to the 2D case discussed previously. Similar improvements (not shown
here) in the computation of the solute Nusselt number over uniform grids were
achieved for this 3D case as well.

5.2 Variable permeability effects
An important, physically meaningful application of double-diffusive convection
modeling concerns the effect that a spatially varying permeability field will have on the
flow. Naturally occurring features such as high-permeability vertical streaks (McKibbin
1986) and horizontal cracks (McKibbin and Tyvand, 1984; Debeda et al., 1995) can
significantly affect the global flowfield as well as generate extremely localized regions of
high temperature and concentration gradients. Here, we consider a simple enclosure with
a ‘‘barrier’’ of lower permeability than the surrounding porous medium, and investigate
the influence on the flow field. The setup for this configuration is shown in Figure 9(a).

The permeability of the barrier, Kb, is assumed to be a fixed value which is smaller
than the permeability of the surrounding medium, K, i.e. Kb=K < 1. The identity
permeability matrix K̂K is diagonally-scaled inside this region. In the first set of
experiments, the same physical parameters are used as in the preceding section (with
� ¼ 0:1) and the geometric parameters H ¼ 0:1;L ¼ 0:48, and t ¼ 0:025 are selected.
Three different values of the permeability ratio, Kb=K ¼ 10�2; 10�3, and 10�4 are
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tested. In order to avoid any permeability ‘‘averaging’’ affects across the discontinuous
barrier, the enclosure was meshed so that the element edges aligned exactly with the
low-permeability region, as shown in Figure 9(b).

The steady-state solute contours and adapted grids for the three different
permeability ratios are shown in Figure 10. In general, we observe that as Kb=K
decreases, additional adaptivity is triggered to capture the rapid flow speed transition
which occurs near the barrier, especially in the gap between the low-permeability
barriers. The adaptivity still tracks the sharp solute boundary layers near the top and
bottom of the domain as well.

The presence of the semi-permeable barrier adds interesting detail to the simulation.
Three distinct rotating convection cells can be observed: two divided by the solute
plume in the bottom of the domain, and one in the top left corner. In the bottom left
corner of the domain, there is also a thickening of the solute boundary layer as the

Figure 8.
The temperature field and
velocity vectors (Figure
8(a)) for the 3D analogue
of the Horton-Rogers-
Lapwood problem in a
cube. (The velocities have
been projected into a C0

continuous basis for
visualization using the
method described in the
Appendix.) An exploded
view of the solute plume
is shown in Figure 8(b). In
the exploded view the
solute boundary layer
which forms at the top of
the domain is also clearly
visible. Finally, in Figure
8(c), we show the
relatively simple adapted
mesh for this case.
Refinement is
concentrated in the
boundary layers at the top
and bottom of the domain
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permeability ratio decreases, due to the proximity of the semi-permeable barrier. The
adaptivity therefore does not target this corner for refinement as strongly in the latter
two cases. We believe this relatively simple geometry (defined by the three parameters
H, L, and t) provides an additional thermosolutal convection benchmark candidate.

5.3 Double-diffusive convection in complex 3D geometries
A common problem which arises in engineering applications is the double-diffusive
natural convection of a fluid around cylindrical objects (i.e. pipes). Hasan and
Mujumdar (1985) mention several such applications, including underground nuclear
detonation, porous dikes filled with steam and gases from rock vapor, and injection-
well oil-recovery techniques. In that study, a shooting method is used to compute 2D
solutions to the equations of double-diffusive flow around an infinite cylinder with a
transpiration (non-zero normal outward flow) boundary condition. The main finding is
a direct correlation between the transpiration strength and the thickness of the thermal
and solute boundary layers at the cylinder wall.

In the present work, we have used the non-trivial geometry consisting of two
intersecting pipes shown in Figure 11. The mesh shown contains 25,696 linear
tetrahedral elements and was carefully constructed using the Cubit (http://
cubit.sandia.gov/) automatic mesh generator, with special care taken to ensure gradual
element size transitions and element grading around the important geometric features,
which in this case are the intersecting pipes. In the present application, the adaptive
mesh refinement process does not interface with a geometry model, and therefore new
nodes which are added as part of the adaptation process are not ‘‘snapped’’ to the
original geometry. The initial coarse grid must therefore capture the essential features of
the geometry while at the same time being coarse enough to allow for efficient adaptive
simulations, since they cannot in principle coarsen below the level of the initial grid.

Motivated by the double-diffusive pipe flow configurations of Hasan and others, we
set up the present problem so that the offset pipe (the pipe intersecting the front and
back faces of the domain, not the corners) is held at fixed temperature and solute
concentrations of T ¼ S ¼ 1. The solute concentration at the bottom of the domain
(the pipes are cut from a unit cube centered at the origin, gravity is oriented in the �y

Figure 9.
Geometric configuration

of the slanted semi-
permeable barrier

problem in the unit square
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Figure 10.
Steady solute contours
and adapted grids for the
semi-permeable barrier
(as described in the text)
for various permeability
ratios
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direction) is held fixed at S ¼ 0, while the temperature at the top plane of the domain is
held fixed at T ¼ 0. The remaining faces of the cube and the diagonal pipe are all
treated as insulated @T=@n ¼ @S=@n ¼ 0ð Þwalls.

The value of �was taken to be 0.1, and the thermal and solutal Rayleigh numbers in
this case were RT ¼ 20 and RS ¼ 16, respectively, reduced from the typical 2D values
of 200 and 160 since this 3D configuration is naturally unstable. (Recall that, in the 2D
configuration, we were examining the onset of instability in a particular parameter
regime.) Reducing the Rayleigh numbers reduces the convective velocities and makes
the dynamics of the problem slower, but the boundary and internal layers can still be
made arbitrarily thin by reducing �.

A representative solution showing the evolving solute field in the angled pipe
geometry is given in Figure 12(a). The mesh for this particular case is shown in Figure
12(b) and is a twice uniformly-refined version of the 25,696 element mesh shown in
Figure 11. In this particular timestep, we observe a rising solute plume coming off the
offset, heated pipe. Although the heavier fluid near the offset pipe naturally wants to
fall (due to gravity) thermal buoyant forces propel it upward. The solute boundary
layer near the bottom of the pipe is slightly thinner and is influenced by the nearby
essential solute boundary condition imposed on the bottom of the domain.

The steady-state solute and temperature field configurations for this case are shown
in Figures 12(c) and (d), respectively. At steady state the temperature and solute fields
are once again quite different in character. The top of the domain is filled with fluid
having a uniformly high solute concentration. This heavier fluid is suspended over a
layer of lighter fluid which matches the essential S ¼ 0 condition at the bottom of the
wall. This inverted solute layer is disrupted by the presence of the pipe: we observe
that the solute layer is drawn up slightly on either side, due to the existence of an
upwelling caused by thermal buoyant effects near the hot pipe. The temperature
boundary layer (at the top of the domain) is much less pronounced than the solute layer
due to the mismatch in diffusivities present (� ¼ 0:1).

For moderate values of � (such as the � ¼ 0:1 case on the uniform grid shown here)
sharp boundary layers in the solute field do not dominate the solution. This situation
changes as we begin to reduce �, and in these cases mesh adaptivity is crucial for
accurately capturing the solution. In Figure 13, we compare two representative cases
where � ¼ 0:0078, both before and after multiple adaptive refinement steps. The
before and after grids are shown in Figures 13(a) and (b), respectively. In these figures,
the colors represent the domain decomposition onto four processors. The meshes are

Figure 11.
Front and back views of

the intersecting pipe
mesh. The mesh has

and 25,696 linear
tetrahedral elements
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relatively coarse for this value of �, and therefore the solution contours are not nearly
as smooth as they were in the uniform grid case.

The solute fields before and after refinement are shown in Figures 13(c) and (d),
respectively. We observe an improved capturing of the solute boundary layer near not
only the bottom of the pipe, but also in the lower left-hand corner of the domain. The
initial coarse grid is not well-designed to capture the solution features in this region
(since the corner geometry is relatively simple) and does a poor job of resolving the
layer. After several adaptive refinement steps, however, the boundary layer in this
region is better resolved. An ‘‘entrainment’’ of low-solute fluid around the heated pipe
rising from the bottom of the domain is again observed in this case, similar to what
was seen previously, however, here the effect is much more pronounced and the
entrainment extends further into the domain.

6. Concluding remarks
The non-linear behavior of double-diffusive convection in a heated, saturated porous
medium is investigated. Of particular interest are: a horizontal layer heated from below

Figure 12.
Representative evolving
solute field (Figure 12(a))
on a mesh (Figure 12(b))
with 1,644,544 elements,
which is a twice-
uniformly-refined version
of the mesh shown in
Figure 11. The steady-
state solute (Figure 12(c))
and temperature (Figure
12(d)) configurations for
the twice-uniformly-
refined mesh with
� ¼ 0:1;RT ¼ 20
and RS ¼ 16
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with a stabilizing solute concentration gradient, problems with fine scale layers due to
permeability streaks or local source effects, and similar issues related to the coupled
multiphysics, multiscale character of the problem class. We have focused on Rayleigh
number values largely in the regime of steady onset, even though this configuration
may exhibit oscillatory onset based on linear stability theory. One example of the
complex oscillatory behavior that occurs in finite amplitude solutions in the horizontal
layer configuration was presented.

Small diffusivity ratio, �, yields strong gradients in the solute concentration at the
boundaries which must be properly resolved. Adaptive and uniform finite element
solutions have been computed for varying values of the Lewis number, in two and
three dimensions, using the ‘‘cold’’ wall Nusselt numbers to characterize the solutions.
The results from analytical asymptotic theory for enclosed porous media boundary
layers which predict square-root growth dependence of the Sherwood Number (solutal
Nusselt number) in the chosen parameter regime were verified for the two-dimensional
configurations tested. An analogous 3D study in a simple cube geometry was also
undertaken and yielded axial sectional simulation plots (not shown here) that were

Figure 13.
Comparison of the solute

boundary layer solution
before and after

refinement, � ¼ 0:0078
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similar to those of the 2D case. This led us to explore a 3D case with a more complex
geometry composed of interior intersecting heated pipes in some detail. The parallel
adaptive mesh refinement and coarsening capabilities of the LibMesh (Kirk et al.,
2006) library were demonstrated to be well-suited to the task of resolving fine scale
behavior in the solute field below the heated pipe. The application code discussed here
will also take advantage of the recently developed parallel mesh data structures
present in LibMesh, allowing the simulations to scale well on modern hybrid multi-
socket, multi-core computing platforms.

Using the statistical refinement and coarsening scheme with the local flux-jump
error indicator it was found that, especially at large Lewis numbers, adaptive grids
could achieve Sherwood number calculations with accuracy comparable to uniform
grids having nearly five times more degrees of freedom. The increased cost for this
accuracy (a single solution projection step followed by an additional nonlinear equation
solve) is more than offset by the increased accuracy it affords. The adaptive scheme
(with the particularly simple flux-jump error indicator chosen) is clearly the more
efficient scheme for this quantity of interest, and in fact the scheme becomes even more
efficient at higher Lewis numbers since the adaptivity becomes increasingly focused in
thinner and thinner layers.

Another interesting aspect that bears further investigation is the concentrated heat
and mass source problem (Poulikakos, 1985; Ganapathy, 1994; Hill, 2005) which has
application to chemical and nuclear waste disposal problems. Very recently, the
problem of reaction-driven, double-diffusive convection resulting from a stratified
chemical front has been studied in some detail (Hernoncourt et al., 2006). These broader
applications of double-diffusive effects would appear to be well-suited to the adaptive
methodology developed here.

Finally, fully three-dimensional, double-diffusive adaptive finite element studies for
problems where the porosity is variable and may approach 1 in significant portions of
the domain are of interest. In this case, Darcy’s law alone may no longer be the
appropriate model. The Brinkman model, where the Darcy viscous term is included in
the Navier-Stokes equations, also has a wide range of applicability. This is an
important area of further research which can be explored within the computational
framework described here.
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Appendix. Visualization
For purposes of flow visualization, it is convenient to plot the components of the Darcy velocity
uh as a continuous vector field. Unfortunately,

uh ¼ K̂K ðbh �rphÞ

is a piecewise-discontinuous function when a standard C0 continuous Lagrange basis is used to
compute ph;Th, and Sh. One method for obtaining the continuous vector field plots is to solve a
global constrained L2-projection problem for the velocity. We recognize that there are local, easily
parallelizable schemes for obtaining the continuous velocity (e.g. the patch recovery method
(Zienkiewicz and Zhu, 1992)). However, since the present L2-projection process is inexpensive
and only required here for visualization purposes, the computational efficiency of the scheme is
not of primary importance.

The constrained L2-projection problem is obtained by seeking the continuous vector function
uc which minimizes

FðucÞ ¼
1

2

ð
�

juc � uhj2 dxþ 1

2�

ð
@�

ðuc � n̂n� gN Þ2 ds ðA1Þ

In the surface integral of equation (A.1), gN is the prescribed value of u � n̂n on the boundary. For
�� 1, this term effectively constrains the recovered velocity field uc to match the in/outflow
conditions set for the original problem. Setting the first variation �FðucÞ ¼ 0 then yieldsð

�

ðuc � uhÞ � �uc dxþ 1

�

ð
@�

uc � n̂n� gNð Þ �uc � n̂nð Þ ds ¼ 0 ðA2Þ

Interpreting the variational quantity �uc as a test function v from a particular space of test
functions V, we then seek uc 2 V such that
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ð
�

uc � v dxþ 1

�

ð
@�

ðuc � n̂nÞðv � n̂nÞ ds ¼
ð

�

uh � v dxþ 1

�

ð
@�

gN ðv � n̂nÞ ds ðA3Þ

for every v 2 V. Choosing an approximation space Vh 	 V (for example the same C0 continuous
Lagrange basis used in the original problem) leads to a well-posed, symmetric system of linear
equations for the post-processed velocity uh

c. In the results sections of the paper, whenever
velocity vectors are shown, they will be assumed to be from the continuous recovered velocity
field uh

c .
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